The Impact of the Adoption of Continuous
Integration on Developer Attraction and Retention

Yusaira Khan, Yash Gupta, Keheliya Gallaba, and Shane MclIntosh
Department of Electrical and Computer Engineering
McGill University
Montréal, Canada
{yusaira.khan, yash.gupta, keheliya.gallaba}@mail.mcgill.ca, shane.mcintosh@mcgill.ca

Abstract—Open-source projects rely on attracting new and
retaining old contributors for achieving sustainable success.
One may suspect that adopting new development practices like
Continuous Integration (CI) should improve the attractiveness of
a project. However, little is known about the impact that adoption
of CI has on developer attraction and retention. To bridge this
gap, we study how the introduction of TRAVIS CI—a popular
CI service provider—impacts developer attraction and retention
in 217 GITHUB repositories. Surprisingly, we find that heuristics
that estimate the developer attraction and retention of a project
are higher in the year before adopting TRAVIS CI than they are
in the year following TRAVIS CI adoption. Moreover, the results
are statistically significant (Wilcoxon signed rank test, o = 0.05),
with small but non-negligible effect sizes (Cliff’s delta). Although
we do not suspect a causal link, our results are worrisome. More
work is needed to ascertain the relationship between CI and
developer attraction and retention.

I. INTRODUCTION

Thriving open-source software projects are often built by
a vibrant community of contributors. Such communities are
built using a platform of tools and resources that allow
developers (and users) to collaborate [6]. Indeed, retaining
existing contributors and attracting new contributors is essential
to the sustained success of OSS projects [3]. Over the lifetime
of a project, maintainers introduce new workflows and practices
accompanied with new tools to increase developer productivity
and also to make the product attractive to new contributors.

Continuous Integration (CI) is one such practice in which
incremental changes to a software project are automatically
built, tested for regression, and checked for common quality
problems as they arrive (or just prior to arriving) in the project
repository. TRAVIS CI stands out as one of the most popular
cloud-based providers of CI services. Little is known about
how the adoption of modern tools, like CI, impact developer
attraction and retention.

In this paper, we perform an exploratory study of the
relationship between TRAVIS CI adoption and developer
attraction and retention. Through analysis of 217 projects
from the MSR challenge dataset [1], we address the following
research question:

How does the adoption of CI impact
developer attraction and retention?

Surprisingly, we find that developer attraction and retention

heuristics tend to be higher in the year prior to adopting TRAVIS
CI than they are in the year afterwards. These results are
statistically significant (Wilcoxon signed rank test, o = 0.05),
with small but non-negligible effect sizes (Cliff’s delta).

Although we do not suspect a causal link, our results suggest
that the link between CI adoption and developer attraction and
retention is complex. More work is needed to ascertain the
relationship between CI and developer attraction and retention.
Paper organization. In the remainder of the paper, we
describe the design of our case study (Section [M)), its results
(Section M), and some conclusions and promising avenues for
future work (Section [[V).

II. CASE STUDY DESIGN

The mining challenge dataset provides TRAVIS CI build
information for 3,702,595 builds spanning 1,283 GITHUB
projects. Figure [I] provides an overview of the three-step
approach that we followed to answer the research question
using the mining challenge dataset. To aid in future replication
of our work, we make our data and scripts available online

A. Data Extraction

The mining challenge dataset contains version history after
TRAVIS CI was introduced to each project. However, to gather
relevant data about how the adoption of TRAVIS CI affects
project attractiveness and retentiveness, we extract additional
version history data dating back to the start of the project from
GITHUB. Our data extraction approach is described below.
Stage DE: Extract Commit Metadata. We extract relevant
metadata from the commit logs of the studied projects. More
specifically, from each commit, we extract its commit ID (hash),
author name, author email, and timestamp.

We use the author email to associate each commit with its
contributor. However, email data is known to be noisy [2] and to
combat this noise, we apply the email address disambiguation
procedure proposed by Bird er al. [2].

B. Data Filtering

After extracting relevant metadata, we filtered the mining
challenge dataset before using it to compute our metrics.
Stage DF 1: Branch Analysis. To conduct our analysis, we
must first identify the main development branch of the studied

Ihttps://dx.doi.org/10.6084/m9.figshare.4805848

https://dx.doi.org/10.6084/m9.figshare.4805848

Data Extraction

Data Filtering

Metrics Collection

Stage DE Stage DF 1 Stage DF 2 Stage DF 3
- n Projects
P 1 Projects with N . .

Extract with s Travis CI J>75‘% : Filter satisfying Estimate

Commit Branch °§T$L‘s Build Cn” short- filt:::ng attractiveness
Metadat Analysis | | master c scovenge lived criteria and

etadata branch overage €(30,60/% projects retentiveness

TravisTorrent Git commit info Observations

dataset

Fig. 1: An overview of our approach to study the relationship between CI adoption and developer attraction and retention.

100
!

80
!

60

40

20

100 80 60 40 20 0
Percentage of commits on the master branch

Percentage of studied projects that survive

Fig. 2: Threshold plot showing the percentage of projects that
survive (Y-axis) when various the thresholds for the percentage
of commits on the master branch (X-axis) are considered.

projects. However, projects may follow different branching
strategies in their git repositories. We focus on repositories that
follow the master branch strategy, where main development
is performed on (or merged into) the master branch.

To detect the projects that are using the master branch
strategy, we compute the proportion of commits that are found

in the master branch for each of the candidate projects.

To determine the suitable cutoff value for the proportion
of commits on the master branch, Figure [2] plots potential
thresholds against the number of surviving repositories.

By analyzing the figure, we selected a threshold value of
80% commits on master, which reduced our dataset to 758
projects (59.1% of the candidate projects in the dataset).
Stage DF 2: TRAVIS CI Build Coverage. Candidate projects
must have historical data prior to and after adopting TRAVIS
CI to ensure that developer attraction and retention values can
be compared among the periods.

In order to detect such projects automatically, we first
compute the build coverage, i.e., the proportion of commits
that land on the master branch that can be associated with
a TRAVIS CI build. To identify the commits that could be
associated with a TRAVIS CI build, we use the TRAVIS
TORRENT dataset. For each candidate project, we compute

build coverage in every month that there was commit activity.

We then normalize the timeline of each project such that
every month in the lifetime of the project could be represented
by a number between 0-1. Note that the last month of the
projects had to be truncated to August 31, 2015, since this was

1.0

i]

0.8

0.6

Monthly Coverage
0.4

1{

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Timeline
Fig. 3: TrAvis CI Coverage Graph for the

data_axle/cassandra_object project from the TRAVIS
TORRENT database. The area under the curve is 0.427.

the final date of builds in the TRAVIS TORRENT dataset. We
then plot the monthly build coverage against the normalized
timeline, yielding a curve in the unit square space.

In order to detect projects that have sufficient pre- and post-
TRAVIS CI data for our analysis, we compute the Area Under
the Build Coverage Curve (AUBCC). Since the curve is in the
unit square space, the values of AUBCC range between 0-1,
where an AUBCC value of 0 indicates that the project has not
used TRAVIS CI, and an AUBCC value of 1 indicates that the
project has used TRAVIS CI since its inception.

Figure [3] shows the build coverage curve for the
data_axle/cassandra_object project, which is an example
of a candidate project that we would like to analyze. The
AUBCC value of this project is 0.427.

Figure [shows a histogram of the AUBCC values for all of
the candidate projects. The distribution of AUBCC values has
a mean of 0.603 and a standard deviation of 0.273. Based on
this histogram, we select the 261 candidate projects that have
an AUBCC value between 0.30-0.60, which have a similar
number of commits prior to and after TRAVIS CI adoption.
Stage DF 3: Filter short-lived projects. From the 261
candidate projects, we select those that had a lifetime of at
least 12 months prior to and after the adoption of TRAVIS CI.
217 projects satisfy this criterion and are selected for analysis.

C. Compute Developer Attraction and Retention Heuristics

In this study, we focus on the developer attraction and
retention properties of projects. Similar to prior work [4],
[Sl], we operationalize these characteristics using the notions

95

74

Frequency
20 40 60 80 100 120 140

47

30

0

0.0 0.2 0.4 0.6 0.8 1.0
Area Under the Build Coverage Curve

Fig. 4: A histogram of the Area Under the Build Coverage
Curve (AUBCC) values for the candidate TRAVIS TORRENT
repositories. The repositories which are in the darkly shaded
area were selected for our analysis.

of magnetism and stickiness, which were proposed by a Pew
Research Center reportE] We define these concepts below:

o Magnetism is the proportion of contributors in the
reference period who made their first commit during
that period (newContributors) to the number of distinct
contributors to the project in that period (contributors), i.e.,
for a reference period ¢, magnetism(t) = %LW

« Stickiness is the proportion of contributors in the reference
period who also made a commit during the period prior to
the reference period (returnContributors) to the number of
distinct contributors to the project in that previous period

. . . . 1i Contribut. t
(contributors), i.e., stickiness(t) = %m

Figure [5] provides an illustrative example of magnetism and
stickiness. Project A had two contributors in the reference pe-
riod, of which only one contributor made their first contribution
during that period, i.e., magnetism(t) = % Similarly, Project B
had three contributors in the reference period, of which only
one contributor made their first contribution during that period,
i.e., stickiness(t) = %

For each project, we compute magnetism and stickiness
scores prior to and post-TRAVIS CI adoption. We analyze
reference periods of length two months and one year to see
if the period length has any impact on our findings. We use
Wilcoxon signed rank tests (ot = 0.05) to check to see if there
is a significant different in the pre- and post-TRAVIS CI values.
Moreover, we use Cliff’s delta to measure the effect size, which
is negligible when delta < 0.147, small when 0.147 < delta <
0.33, medium when 0.33 < delta < 0.474, and large otherwise.

III. CASE STUDY RESULTS

In this section, we discuss the results of our case study. First,
we describe our approach and then we describe the results.
Approach. First we extracted the contributor statistics from
7 to 12 months and from 1 to 6 months before TRAVIS CI
was introduced. For getting the date when TRAVIS CI was

Zhttp://www.pewsocialtrends.org/2009/03/11/magnet-or-sticky/

A 0000
o€ B -0--O-
: °o O
8% 0D -0--0--O-
ge |00 |-O-O

F =O-|-O-

Previous Period Reference Period

Fig. 5: Figure showing the calculation of newContributors,
contributors and returnContributors

introduced in the workflow of the project, we look in the mining
challenge dataset for the first commit that triggered a build
in TRAVIS CI. We take this commit as the demarcation point
between the before and after time periods. Then we used these
statistics to compute the magnetism and stickiness metrics for
the period of one year before the introduction of CI.

Similarly, for the one year period after the introduction of CI,
we extracted the contributor statistics first from 1 to 6 months
and then from 7 to 12 months after TRAVIS CI was introduced.
Then we used them to compute the magnetism and stickiness
metrics for the period of one year after the introduction of CIL.
Results. Magnetism and stickiness values tend to drop
after TRAVIS CI has been adopted. Figure [6a] shows the
magnetism and stickiness values for one year time periods.
The median Magnetism one year before CI is 0.415, mean is
0.415 and the standard deviation is 0.208. One year after CI,
the median is 0.326, mean is 0.320 and the standard deviation
is 0.165. A Wilcoxon signed rank test reveals that the drop
in magnetism is statistically significant (p = 1.35 x 1077).
Moreover, we obtain a Cliff’s delta of 0.293, which is
considered small, but non-negligible.

When we turn to stickiness, we find that it drops from: (i)
a median of 0.349 before to 0.286 after; (ii) a mean of 0.425
before to 0.329 after; and (iii) a standard deviation of 0.289 to
0.197 after. A Wilcoxon signed rank test reveals that the drop
in stickiness is statistically significant (p = 4.42 x 107°), with
a Cliff’s delta of 0.186, which is again considered small, but
non-negligible.

Observation 1: Magnetism and stickiness values tend to drop
in the year that follows TRAVIS CI adoption.

Figure [6b] shows the magnetism and stickiness values for two
month time periods. The median Magnetism two months before
CI is 0.273, mean is 0.342, and the standard deviation is 0.346.
Two months after CI, the median is 0.125, mean is 0.183 and
the standard deviation is 0.222. A Wilcoxon signed rank test
reveals that the drop in magnetism is statistically significant

http://www.pewsocialtrends.org/2009/03/11/magnet-or-sticky/

Bl Before CI

o @ After Cl
«© _|

o

©

Q -

<

o

N

o

o

2 -

B Before Cl

S @ After Cl
@®

o

©

o

<

o

N

o

o

o

T T
Magnetism Stickiness

(a) One year time periods

T T
Magnetism Stickiness

(b) Two month time periods

Fig. 6: A beanplot comparing the Magnetism and Stickiness scores prior to and post-TRAVIS CI adoption.

(p=2.23 x 108). Moreover, we obtain a Cliff’s delta of 0.246,
which is again considered small, but non-negligible.

Similarly, for Stickiness, the median Stickiness two months
before CI is 0.500, mean is 0.460, and the standard deviation
is 0.396. Two months after CI, the stickiness values have a
median of 0.500, mean of 0.492, and a standard deviation
of 0.347. A Wilcoxon signed rank tests reveals that we do
not have enough evidence to reject the null hypothesis, i.e.,
the stickiness values pre- and post-TRAVIS CI are statistically
indistinguishable. Moreover, we obtain a Cliff’s Delta of -0.06,
which is considered negligible.

Observation 2: The magnetism two months prior to TRAVIS
CI adoption is significantly higher than magnetism in the two
months after TRAVIS CI adoption, with a small effect size.
However, stickiness values are statistically indistinguishable
before and after TRAVIS CI adoption.

Implications. Surprisingly, magnetism and stickiness values
tend to decrease after TRAVIS CI has been adopted in the
studied systems. However, we caution against drawing naive
conclusions based on these observations (e.g., one should avoid
adopting CI). There are several reasons to adopt a CI workflow,
such as improvements in defect reporting and a reduction in
developer overhead, since unlike less frequent build cycles,
problems can be caught early, while tradeoffs and design
decisions are still fresh in the developers’ minds. If, however,
the primary motivation for a move to a CI workflow is to
attract or retain developers, our observations suggest that this
is unlikely to come to fruition.

IV. CONCLUSIONS

Developer attraction and retention are key characteristics
for the growth of a community around an open-source project.
In theory, adoption of modern development techniques and
tools should have a positive effect on developer attraction and

retention. In this paper, we analyzed the relationship between
adoption of TRAVIS CI—a popular CI service provider—and
project magnetism (a heuristic for developer attraction) and
stickiness (a heuristic for developer retention). Surprisingly,

our results suggest that TRAVIS CI adoption is accompanied
by a statistically significant drop in magnetism and stickiness.

While these observations are worrisome, we cannot claim
that there is a causal link between the phenomena. A limitation
of our current analysis approach is that we have not controlled
for confounding factors, such as team or system size. An
approach to address this limitation would be to train regression
models to explain the studied relationship while controlling
for several confounding factors. We plan to conduct such a
study in future work. In future work, we also plan to analyze
the trend of the magnetism and stickiness over the years rather
than using snapshots of a year or 2 months.

REFERENCES

[1] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration.
In Proceedings of the 14th working conference on mining software
repositories, 2017.

C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining
Email Social Networks. In Proceedings of the 3rd Int’l Conf. on Mining
Software Repositories (MSR), pages 137-143, 2006.

A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open
source software development: Apache and mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(3):309-346, 2002.
M. Ortu. Mining Software Repositories: Measuring Effectiveness and
Affectiveness in Software Systems. PhD thesis, University of Cagliari,
2014.

K. Yamashita, S. Mclntosh, Y. Kamei, and N. Ubayashi. Magnet or sticky?
an oss project-by-project typology. In Proceedings of the 11th working
conference on mining software repositories, pages 344-347. ACM, 2014.
Y. Ye and K. Kishida. Toward an understanding of the motivation open
source software developers. In Proceedings of the 25th international
conference on software engineering, pages 419-429. IEEE Computer
Society, 2003.

[2

—

(3]

(4]

[5

—

[6

—_

